

Aparna Lakshmanan S.¹, <u>Csilla Bujtás²</u>, Zsolt Tuza^{2,3}

¹ St. Xavier's College for Women, Aluva, India
 ² University of Pannonia, Veszprém, Hungary
 ³ Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary

- 1. Line graphs, *k*-line graphs
- 2. Characterization: $G \square F$ is a triangle graph
- 3. Characterization: $G \square F$ is a *k*-line graph
- 4. Anti-Gallai graphs, k-anti-Gallai-graphs
- 5. Recognizing *k*-line graphs and *k*-anti-Gallai graphs: NP-complete for every $k \ge 3$

- Line graph L(G)vertices of $L(G) \leftrightarrow$ edges $(K_2$ -subgraphs) of Gedges of $L(G) \leftrightarrow$ two edges share a K_1 in G
- Triangle graph T(G)

vertices of $T(G) \leftrightarrow$ triangles (K_3 -subgraphs) of Gedges of $T(G) \leftrightarrow$ two triangles share an edge (K_2) in G

- Line graph L(G)vertices of $L(G) \leftrightarrow$ edges $(K_2$ -subgraphs) of Gedges of $L(G) \leftrightarrow$ two edges share a K_1 in G
- Triangle graph T(G)vertices of $T(G) \leftrightarrow$ triangles (K_3 -subgraphs) of Gedges of $T(G) \leftrightarrow$ two triangles share an edge (K_2) in G
- k-line graph $L_k(G)$ vertices of $L_k(G) \leftrightarrow K_k$ -subgraphs of Gedges of $L_k(G) \leftrightarrow \text{two } K_k$ -subgraphs share k - 1 vertices (K_{k-1}) in G

- Line graph L(G)vertices of $L(G) \leftrightarrow$ edges $(K_2$ -subgraphs) of Gedges of $L(G) \leftrightarrow$ two edges share a K_1 in G
- Triangle graph T(G)vertices of $T(G) \leftrightarrow$ triangles (K_3 -subgraphs) of Gedges of $T(G) \leftrightarrow$ two triangles share an edge (K_2) in G
- k-line graph $L_k(G)$ vertices of $L_k(G) \leftrightarrow K_k$ -subgraphs of Gedges of $L_k(G) \leftrightarrow \text{two } K_k$ -subgraphs share k - 1 vertices (K_{k-1}) in G

$$L_{1}(G) = K_{|V(G)|}, \ L_{2}(G) = L(G), \ L_{3}(G) = T(G)$$

T (**G**)

T(G)

T (**G**)

T (**G**)

T(G)

Triangle graph - some observations

G = T(G')

- G is K_{14} -free
- If *G* contains a K_4 $v_1v_2v_3v_4$ with a preimage K_4 in *G*', then each further vertex of *G* is adjacent to 0 or 2 vertices from $v_1v_2v_3v_4$

• If *G* contains a diamond *D*, then there is a further vertex adjacent to exactly three vertices of *D*

G = T(G') & G has no K_4 -component: G' is K_4 -free \longleftrightarrow G is diamond-free

k-line graphs - analogous observations

 $G = L_{\mathbf{k}}(G')$

- G is $K_{1,k+1}$ -free
- If G contains a K_{k+1} subgraph F with a preimage K_{k+1} in G', then each further vertex of G is adjacent to 0 or 2 vertices of F
- If G contains a diamond D, then there are further k 2 vertices of G forming K_{k+1} together with three vertices of D

 $G = L_k(G')$ & G has no K_{k+1} -component (k \ge 2) : G' is K_{k+1} -free \longleftrightarrow G is diamond-free

Cartesian product

 $G \Box F$:

- $V(G \Box F) = V(G) \times V(F)$,
- (v, u), (v', u') are adjacent iff

$$[v = v' \& uu' \in E(F)]$$
 or $[vv' \in E(G) \& u = u']$

Cartesian product - as a triangle graph

(G and F are connected, non-edgeless graphs)

 $G \square F$ is a triangle graph if and only if

 $F = K_n$ and G is the line graph of a K_3 -free graph (or vice versa).

Proof.

- 1. If *G* and *F* are non-complete $\rightarrow \exists$ induced paths $u_1u_2u_3$ and $v_1v_2v_3 \rightarrow (u_2, v_2)$ has four independent neighbors $\rightarrow G \Box F$ is not a triangle-graph
- 2. $G \Box F = T(H) \rightarrow G, F$ claw-free and diamond-free $\rightarrow G, F$ are line graphs
- 3. G = L(G')if $G = K_3$, then let $G' = K_{1,3}$ if $G \neq K_3$, G is diamond-free $\rightarrow G'$ is K₃-free
- 4. Sufficiency: G = L(G') & G' is K_3 -free $\rightarrow T(G' \lor nK_1) = L(G') \Box K_n = G \Box K_n$

(*G* and *F* are non-edgeless connected graphs)

 $G \square F$ is a **k**-line graph if and only if $\exists a, b$

- G is the **a**-line graph of a K_{a+1} -free graph,
- F is the **b**-line graph of a K_{b+1} -free graph, and

• $a+b \leq k$

(*G* and *F* are non-edgeless connected graphs)

 $G \Box F$ is a *k*-line graph if and only if $\exists a, b$ • *G* is the *a*-line graph of a K_{a+1} -free graph, • *F* is the *b*-line graph of a K_{b+1} -free graph, and • $a + b \leq k$

Sufficiency:

- Let $G = L_a(G')$, $F = L_b(F')$, G' is K_{a+1} -free, F' is K_{b+1} -free $L_{a+b}(G' \lor F') = G \Box F$
- If k (a + b) = c > 0, then $L_k((G' \lor F') \lor K_c) = G \Box F$

Necessity:

• Lemma1: $H = L_k(H')$ and H contains an induced 4-cycle: $c_1c_2c_3c_4 \longrightarrow$ for the preimages in H': $C_1 \setminus C_2 = C_4 \setminus C_3$.

Necessity:

• Lemma 1: $H = L_k(H')$ and H contains an induced C_4 : $c_1c_2c_3c_4$ for the preimages in H': $C_1 \setminus C_2 = C_4 \setminus C_3$.

Necessity:

Let $H = G \Box F = L_k(H')$.

For a copy G_j of G consider the preimage k-cliques $C(u_i, v_j)$ of H', and define the sets of the universal and non-universal vertices: $U_i^G = \bigcap \{ C(v_i, u_j) : v_i \in V(G) \}, \quad X_i^G = \bigcup \{ C(v_i, u_j) : v_i \in V(G) \} \setminus U_i^G$

Necessity:

Let $H = G \Box F = L_k(H')$.

For a copy G_j of G consider the preimage k-cliques $C(u_i, v_j)$ of H', and define the sets of the universal and non-universal vertices: $U_i^G = \bigcap \{ C(v_i, u_i) : v_i \in V(G) \}, \quad X_i^G = \bigcup \{ C(v_i, u_i) : v_i \in V(G) \} \setminus U_i^G$

Lemma 2:

- The non-universal vertices are the same: $X_i^{\ G} = X_m^{\ G}$
- If $v_i v_m \in E(F) \to \exists z, w \quad U_m^G = U_i^G \setminus \{z\} \cup \{w\}$

Necessity:

Let $H = G \Box F = L_{\mathbf{k}}(H')$.

For a copy G_j of G consider the preimage k-cliques $C(u_i, v_j)$ of H', and define the sets of the universal and non-universal vertices: $U_i^G = \bigcap \{ C(v_i, u_i) : v_i \in V(G) \}, \quad X_i^G = \bigcup \{ C(v_i, u_i) : v_i \in V(G) \} \setminus U_i^G$

Lemma 2:

- The non-universal vertices are the same: $X_i^{\ G} = X_m^{\ G}$
- If $v_i v_m \in E(F) \longrightarrow \exists z, w \quad U_m^G = U_i^G \setminus \{z\} \cup \{w\}$

To complete the proof:

- $x = |U_1^G|$ and $y = |U_1^F| \rightarrow$
- *G* is the (k x)-line graph of a K_{k-x+1} -free graph, and
- *F* is the (k y)-line graph of a K_{k-y+1} free graph.
- $x + y \ge k$

Subgraphs of k-line graphs

- Anti-Gallai graph $\Delta(G)$ vertices of $\Delta(G) \leftrightarrow$ edges (K_2 -subgraphs) of Gedges of $\Delta(G) \leftrightarrow$ the two edges (share a K_1 and) are in a common K_3 in G
- *k*-anti-Gallai graph $\Delta_k(G)$

vertices of $\Delta_{k}(G) \leftrightarrow K_{k}$ -subgraphs of Gedges of $\Delta_{k}(G) \leftrightarrow \text{two } K_{k}$ -subgraphs (share a K_{k-1} and) contained in a common K_{k+1} in G

• k-Gallai graph $\Gamma_k(G)$ vertices of $\Gamma_k(G) \leftrightarrow K_k$ -subgraphs of Gedges of $\Gamma_k(G) \leftrightarrow \text{two } K_k$ -subgraphs share a K_{k-1} and NOT contained in a common K_{k+1} in G

•
$$\Delta_1(G) = G$$
, $\Delta_2(G) = \Delta(G)$; $\Gamma_1(G) = \overline{G}$, $\Gamma_2(G) = \Gamma(G)$

Recognizing triangle graphs

The following problems are NP-complete:

- Recognizing triangle graphs
- Deciding whether a given graph is the triangle graph of a K_4 -free graph

Anand, Escuardo, Gera, Hartke, Stolee (2012):

 Deciding whether a given connected graph is the anti-Gallai graph of a *K*₄-free graph --- NP-complete problem

Recognizing triangle graphs

The following problems are NP-complete:

- Recognizing triangle graphs
- Deciding whether a given graph is the triangle graph of a K_4 -free graph

Proof:

Lemma1: If $F = \Delta(F')$ and F is connected, then

F' is K_4 -free \iff (1) every maximal clique of *F* is a triangle and any two triangles share at most one vertex

<u>Lemma2</u>: If G = T(G') and G is connected, $G \neq K_4$, then

- *G'* is K_4 -free \iff (2) each vertex of *G* is contained in at most three maximal cliques, and these are edge-disjoint
- Given a connected instance *F*

 \rightarrow Check (1)

- → If it holds, construct the clique graph $G = K(F) \rightarrow G$ satisfies (2) + conn
- $\rightarrow F = \Delta(H) \qquad \longleftrightarrow \qquad G = T(H)$ (suppose: *H* is 'triangle-restricted')

Recognizing k-line graphs

- For $k = 1 \rightarrow \text{trivial}$
- For $k = 2 \rightarrow$ polynomial-time (Beineke), linear-time (Lehot; Roussopoulos)
- For $k = 3 \rightarrow$ we have proved: NP-complete

The following problems are NP-complete for each $k \ge 4$

- Recognizing *k*-line graphs
- Deciding whether a given graph is the k-line graph of a K_{k+1} -free graph

Proof:

- $k = 3 \rightarrow \text{NP-complete}$
- Induction on k:

G is the *k*-line graph of a K_{k+1} -free graph \leftrightarrow

 $G \square K_2$ is the (k + 1)-line graph of a K_{k+2} -free graph

(on the class of connected graphs)

- For $k = 1 \rightarrow \text{trivial}$
- For $k = 2 \rightarrow \text{NP-complete}$ (Anand et al.)

The following problems are NP-complete for each $k \ge 3$

- Recognizing *k*-anti-Gallai graphs
- Deciding whether a given graph is the k-anti-Gallai graph of a K_{k+2} -free graph

Proof:

<u>Lemma</u>: G is K_{k+2} -free $\leftrightarrow \Delta_k(G)$ is diamond-free \leftrightarrow each maximal clique of $\Delta_k(G)$ is either an isolated vertex or a (k + 1)-clique, and any two maximal cliques intersect in at most one vertex.

- Induction on k
- Given a connected instance *G*
- \rightarrow Check diamond-freeness
- \rightarrow If it holds, construct G^*

$$\rightarrow G = \Delta_k(G') \leftrightarrow$$
$$G^* = \Delta_{k+1}(G' \lor 2K_1)$$

Proof:

<u>Lemma</u>: G is K_{k+2} -free $\leftrightarrow \Delta_k(G)$ is diamond-free \leftrightarrow each maximal clique of $\Delta_k(G)$ is either an isolated vertex or a (k + 1)-clique, and any two maximal cliques intersect in at most one vertex.

- Induction on k
- Given a connected instance *G*
- \rightarrow Check diamond-freeness
- \rightarrow If it holds, construct G^*

$$\rightarrow G = \Delta_k(G') \leftrightarrow$$
$$G^* = \Delta_{k+1}(G' \lor 2K_1)$$

Proof:

<u>Lemma</u>: G is K_{k+2} -free $\leftrightarrow \Delta_k(G)$ is diamond-free \leftrightarrow each maximal clique of $\Delta_k(G)$ is either an isolated vertex or a (k + 1)-clique, and any two maximal cliques intersect in at most one vertex.

- Induction on k
- Given a connected instance G
- \rightarrow Check diamond-freeness
- \rightarrow If it holds, construct G*

$$\rightarrow$$
 G = Δ_{k} (G') \leftrightarrow G*= Δ_{k+1} (G' V 2K₁)

Proof:

<u>Lemma</u>: G is K_{k+2} -free $\leftrightarrow \Delta_k(G)$ is diamond-free

- ↔ each maximal clique of $\Delta_k(G)$ is either an isolated vertex or a (k+1)-clique, and any two maximal cliques intersect in at most one vertex.
- Induction on k
- Given a connected instance G
- \rightarrow Check diamond-freeness
- \rightarrow If it holds, construct G*

$$\rightarrow$$
 G = $\Delta_{k}(G') \leftrightarrow$ G*= $\Delta_{k+1}(G' \vee 2K_{1})$

Proof:

<u>Lemma</u>: G is K_{k+2} -free $\leftrightarrow \Delta_k(G)$ is diamond-free

- ↔ each maximal clique of $\Delta_k(G)$ is either an isolated vertex or a (k+1)-clique, and any two maximal cliques intersect in at most one vertex.
- Induction on k
- Given a connected instance G
- \rightarrow Check diamond-freeness
- \rightarrow If it holds, construct G*

$$\rightarrow$$
 G = Δ_{k} (G') \leftrightarrow G*= Δ_{k+1} (G' V 2K₁)

Recognition problem of k-Gallai graphs

OPEN for each $k \ge 2$: What is the time complexity of the recognition problem of k-Gallai graphs?

```
k-Gallai graph \Gamma_k(G)
vertices of \Gamma_k(G) \leftrightarrow K_k-subgraphs of G
edges of \Gamma_k(G) \leftrightarrow \text{two } K_k-subgraphs share a K_{k-1} and
NOT contained in a common K_{k+1} in G
```

Remark.

Deciding whether a given graph is the *k*-Gallai graph of a K_{k+1} -free graph \rightarrow NP-complete (for each $k \geq 3$) But we have no polynomial-time checkable property *P* with: $\Gamma(G')$ has property *P* if and only if *G'* is K_{k+1} -free

Thank you for your attention...